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LETTER TO THE EDITOR 

Possibility of quasiparticle behaviour in the strongly 
correlated Hubbard model 

Minette M Mohant 
Physics Department. McGill University, 3600 University Street. Montreal, Qutbec, 
Canada H3A 2T8 

Received 21 December 1990. in final form 19 March 1991 

Abstract. I calculate an exact expression for the Green function of a single hole in a Nee1 
background. forfinire Ising interaction J ,  4r’/Uwhere tis  the hopping (overlap) integral 
in the Hubbardmodeland Uthe usualon-site interaction, In lo for fixed boundaryconditions, 
loops are absent and thus the expression is exact and independent of the retraceable path 
approximation, while in 2D the expression is exact to within the exclusion of loops. The 
spectral function A(w)  shows delta-function peaks at well defined energy spacings, with 
damping only at frequencies w > S / 2 J t  different from earlier results. These peaks are 
necessary for the existence ofquasiparticles. Ipresent an argument that, forsufficientlylarge 
U. the discrete spectrum in A(w) merges to a continuous ‘band‘ as the weight z J 2  of the 
poles vanishes in the U = cc limit and hence that use of the latter does not necessarily imply 
incoherent behaviour in the system. 

With the idea that the new high-T,superconductivity may be associated with the copper 
oxide layers in these compounds, and the similarity of various physical properties 
[I] with the predictions of theories based on Mott-charge-transfer insulators, a first- 
principles investigation of the properties of the large-U Hubbard model is of great 
importance. One class of theories and investigations is based on the possibility of 
superconductivity in the single-band large-U ?D Hubbard model [2,3]. The starting 
Hamiltonian in these theories is the usual one for no double occupancy namely, 

H =  r C ( i - n i , - ~ ) ~ ~ , ~ ~ i , ~ ( i - n i , - ~ ) + ~ C  (sisi-tnini) (1) 
Ci.i>.o (i.d 

where tis the overlap integral between nearest neighbour sites i and j ,  U is the on-site 
Coulomb repulsion, &(Si) the spin on the ith (jth) site, ni = cfci and J = 4tz/U is the 
usual superexchange interaction. 

A question of great interest is the possibility of quasiparticle behaviour of a single 
hole in an antiferromagnetic background. In the weakly doped limit, where hole-hole 
scattering can he neglected, the single-hole problem is of relevance to the copper oxide 
high-T, superconductors in which the antiferromagnetism of equation (1) in the half- 
filled band case has been experimentally observed. In an early paper, Brinkman and 
Rice [4] considered this question in the U = m limit (J, = 0) using the retraceable path 
approximation. More recently, approximate diagrammatic approaches based on Green 
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function decoupling schemes [5-71 reconsidered the problem justifying the validity of 
their approximations by comparison with the U = m limit of [4]. 

It is the purpose of this paper to re-examine the issue of quasiparticle behaviour by 
a systematic introduction of finite J ,  into the retraceable path approximation. I derive 
an exact expression for the Green function (propagator) for a single hole in a Ne61 
background (half-filled band) and evaluate the spectral function. The delta-function 
peaks which I obtain are necessary for quasiparticle behaviour. Bloch-type quasiparticle 
behaviour conclusively emerges when the wave function is written as a superposifion of 
all possible states. 

In the Ising limit J ,  + 0, the motion of the hole changes the NBel background, 
generating a succession of ‘string’ states in which the spins appear ‘overturned’ with 
respect to the Nkel background [2,8]. Within this basis, the properties of the ZD spectral 
function which I present are necessary for quasiparticle behaviour. However, it is 
generally supposed that the continuous spectrum in the infinite U limit [4] is associated 
with incoherent behaviour of the hole. On sufficiently short time scales z 4 J;’ such 
that the background remains unchanged as the hole hops, quasi-particle behaviour may 
not be incompatible with a‘continuous’spectrum as iscommonly thought [4-6,8]. Thus 
theories based on the limit U-+ m may actually be applied to quite realistic situations. 

In ID, the string can be at most of length one. Taking the Nkel state as the zero of 
energy, the state derived from this state by addition of a vacancy has energy J,/2 in ID,  
J ,  in ZD. For fixed boundary conditions there are no loops [4]. Thus the Green function 
in I D  is given in a single calculation exactly by 

independent ofthe retraceable path approximation. In the U-, =limit J ,  -+ 0, equation 
(2) reduces to the two square root singularities at i 2 f  of [4]. With the change of 
variable U = - (1 - 4[w/w - (f/U)]z}’/z where w = 4t is the bandwidth in ID, we have 
for -1 < U  < 0, 

U 1 
- + -  

1 
Im GID(w) = - 

2f[u*+(f/U)z] u-tx (4rZ-w2)1/2’ (3) 

This function is peaked at IuI = (t/U) or equivalently at w = i 2f + J ,  3 &I:.  The 
absence of off-diagonal terms in (2) implies that the ‘equilibrium’ Gk(w) = 0 unless k = 
0, znn, n = 0 , l  , . , in units of the lattice spacing. It is evident from figure 1 that Im G 
has no peak at w = 0. From (3) we see that the lineshape differs from a Lorentzian. 
These differencesfrom [6] couldoriginate from the J ,  termsneglected here. Such terms, 
which include spin waves, become least important for k = i n / 2  or frequencies large 
compared with a spin wave frequency [l]. Thus for this choice of wave number, and for 
frequencies away from the origin, the lineshapes of [6] should be most similar to (3). 
Figure 1 shows the peaks and shift in the spectrum introduced by making f / U  finite. 
Perhaps worth pointing out is that [9] calculates an expression, which is similar in 
principle. with Bloch states introduced at the outset, generated from the initial NBel 
state producing a ‘string’ through the action of a sequence of raising and lowering 
operators S’ which does not explicitly include more important S:S; terms in the 
Hamiltonian. This results in equation (15) of [9] being very similar to, but not exactly 
the same as, (2) above, in which the string of overturned spins generates interactions 
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Figure 1. A(w) versus w/I  for I = 1 and 3: = 0 (dotted curve), 3, = 0.4 (full curve) 

.cSjSi neglected in [9], though it does not include J ,  for the reasons mentioned in the 
introduction. 

Using the 'string' statesof length [as approximate eigenstates [SI the Green function 
in ZD is &'en by 

which is exact within the zero-loop retraceable path approximation. Here v = yz, 

order v [ll]. Gi,i is diagonal owing to the neglect of loops and the restriction to nearest 
neighbour hopping processes in (1). These, together with random spin flips, relax 
the condition that the hole must return to its original position in order to leave the 
antiferromagnetic background unchanged. However, inclusion of loops is believed to 
introduce only a weak [6,9,10] k-dependence into the dispersion relation for quasi- 
particles while random spin flips are not expected to be more important. 

7 ' -  [ - $ J Z ] / ( Z f l ) ,  I 3 lhU/(2t) and J&) is the cylindrical Bessel function of 

We can write (4) in the form 

1 
G ( w )  = 

w -E(@) 

where 

andforvZ -n[11], 

The zerosj,-l,,of theBessel function zY-l  J.-l(z) are purelyreal for v > 0, henceX(o) 
is purely real for w < $J,.  In this region, therefore, there is no damping to the poles of 
G(w) (mathematically this corresponds to no branch line in X(w) ,  i.e. no discontinuity 
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Figure 2. Graphical solution of equation (9) fort = 1, z = 20 ( I ,  = 0.17). The dotted curve 
showsg = f ( v ) .  thebrokencurveshowsy=g(v),almostparalleltotheliney =O.Thefirst 
three poles in A(o) .  which are graphical solutions to (9). are marked by diamonds (exact) 
andsquares(to0rder  at Y = 8.69. 11.76.15.52~and815.11.33,15.01.respectively. 

in Z(w)  across the real w axis). Hence, quasiparticle behaviour corresponding to exci- 
tations with well defined energy is predicted at frequencies given by the delta-function 
peaks in the spectral function [12] 

A(w)  = - 2Im G(w)  = 2nS[w-ReZ(w)] o < 95,. (7) 
Physically these peaks correspond to the allowed energies of the hole in the system and 
are necessary for quasiparticles. The peaks occur at frequencies on such that 

w ,  - Re Z(w.)  = 0 (8) 
i.e. at the solutions to the equation 

g(v) =f(v) (9) 
where g ( v )  = 9/42 - 3v/2z andf(u) = Ju(z)/Ju-,(z). The peaks have no damping in 
this range which implies that the original basis states are good approximations to the 
true eigenstates, and that the hole makesno ‘transitions’ into different states by scattering 
with the background. However, for o > U,, equations (5) and (6) imply that Im 2 # 0 
and hence that peaks inA(o) will have some width, contrary to [5]. 

If we suppose that the U = m limit of (4) gives the same result as [4] then from (6) we 
have the exact equality, 

i.e. that the discrete spectrum of zeros and poles of the function fiu) merges to a 
branchline on the real w axis. For U < m the zeros and poles off(u) are separated by a 
narrow region of order (l/u) whereas the first few zeros (poles) off(u) are separated 
by order ( l / ~ ) ~ ’ ~  (see figure 2). In this limit, the poles off(v) merges into the branch cut 
along the real w axis, coincident with the appearance of the ‘incoherent’ continuous 
spectrum of Brinkman and Rice [4]. This U-, m limit ensures that A&, the spacing 
of adjacent energy levels, is small compared with the time for hopping of the hole from 
one site to the next, so that the hole can hop over many sites in time t, i.e. 
A& - Jj’’ < r-l (thus J, Q C‘). Since as Jz-+ 0 this condition becomes more easily 
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satisfied, one important consequence is that the absence of discrete poles in the 
Brinkman-Rice continuous density of states does not necessarily imply lack of quasi- 
particle behaviour in the large-U limit of the Hubbard model; the shape of A(w)  in the 
U-+ m limit may be regarded as an approximate ‘envelope’of the delta-function peaks 
io the finite U limit. Thus at least in the limit AE -=Z r-’, the U+ m limit may prove a 
realistic approximation even in the presence of finite J ,  [l]. 

We now proceed to solve (9) approximately. Neglectingtermsof order l / v  compared 
with 1, the solutions of (9) near the lower band edge are given by the solutions of 
f(v) = 0, or equivalently by 

z - j”,” = 0. (11) 

( z  - j u n - d d v n )  + 1 = 0. (12) 

w , = - 2 f l ( i - a . / ~ 2 / 3 + 1 / 3 ~ )  (13) 

An expansion about the nth pole in (6), accurate to order I / Y ,  gives 

The first three solutions of (12) are 

where [13] a l  = 1.856, a2 = 3.245 and a3 = 4.382. In particular, the lowest pole occurs 
at a value of 

=- -2V3(1 - 0.81J$” - 0.635,). (14) 
From (14) we see the original ZD bandwidth W/2 = 4 is narrowed by -J, for J, > 0.4. 
This result (14) is valid only for frequencies very near the lower band edge located 
at -2~[4,5].ThelowestpeakoccursforJ~-O.2atw-O.6(2fl) - -2.lverynear 
the result --2 obtained in figure (10) of [9] using the Heisenberg model for k = 
( q 2 ,  n/2) when spin waves in the retraceable path approximation are least important, 
and for J, - 0.05 at w - -0.86(2G - -2.98 very near -2.8 in the integrated spectral 
function A(w)  of figure 9 of [9] for calculations done on the NBel state. Surprisingly, 
figure 14 of [9] showing J, = 0.2 in the pure king limit, exhibits a peak at a much higher 
value (w - -0.4) thanpredictedin this pureIsingcalculation. Althoughtheircalculation 
is done on finite systems, properties of these systems should already begin to approach 
those of infinite systems at least in functional dependence on Ji4. 

A ( w )  = 2nS[g(v) + ( z  - j.-I.n)-J] 

Close to the poles one can write to order l / v  

= h S ( w  - o,)Z(w,) (15) 

where Z(wJ is the weight of each of these poles, given by 
- 1  d 3u 1 = $J,(1 + Q(J:”)) 

w 22 “=On 

which is similar to [5]. 
In a continuum (in frequency space) approximation, in which we replace the con- 

tinuousindex vfor v B 1 bytheintegralindexnwithn 9 l , fv(z)  =f,,(z) = Jn(z)/JnF1(z). 
Neglecting terms of order (l/n) the solutions of (9) are the zeros of the Airy functions 
Ai(-W) where t) = ( z  - n)/(2z)’I3. Since, however, J-,(z) = (-l)”Jn(z), to order 
@ I 3 ,  the spectrum of excitations of the hole is symmetric in 2 w in contrast to the result 
for U continuous. 
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To summarize, by examining the properties of an exact Green function calculated 
systematically in the king limit, several new results have emerged for a single hole in an 
antiferromagnetic background. 1 argue that the 'continuous band' of infinite-U theories 
does not necessarily exclude quasiparticle behaviour, as is generally supposed. In ID, 
the U = m square root singularities at the upper and lower band edges are replaced by 
finite peaks in an exact calculation. In ZD, I give analytic expressions for the first three 
peaksin thedensity ofstates, which isshown to have dampingofitsdelta-function peaks 
only at frequencies w > +5/2J,. In a continuum (in frequency space) approximation, 
the (undamped) spectrum is symmetric with respect to 2 win the distribution of its peaks 
up to -J;l3 and in the weight of the peaks at least to order J,. 

I would like to thank Professors N Kumar and ETosatti, for useful discussions on spin 
systems, and the International Centre for Theoretical Physics for financial support and 
use of its facilities where this work was begun. 
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